CPPvm - C++4 and PVM

Steffen Gorzig

DaimlerChrysler Research and Technology 3,
Software Architecture (FT3/SA),
P.O. Box 23 60, 89013 Ulm, Germany,

steffen.goerzig@daimlerchrysler.com

Abstract. CPPVM is a C++ class library for message passing. It pro-
vides an easy—to—use C++ interface to the parallel virtual machine soft-
ware PVM. CPPVM closes the gap between the design of object-oriented
parallel programs in C++ and the underlying message passing possibil-
ities of PVM. Although PVM can be used directly in C++ programs
due to its C—functions, it does not support C++ specific features. CP-
PvM enlarges PVM with such features as classes, inheritance, overloaded
operators, exception handling and streams. CPPvM also hides some de-
tails of PVM from the user and thus makes it easier to write parallel
programs.

This paper describes the concepts of CPPvM. An example will explain
how to transfer C++ objects between processes. CPPVM is available for
many architectures, from Windows to several UNIX derivatives.

1 Introduction

Software libraries for cluster computing like the Parallel Virtual Machine (PVM,
[1]) or the Message Passing Interface (MPI, [2]) mainly support procedural pro-
gramming languages such as Fortran or C. Since object-oriented programming
has become more and more popular in the last decade, several projects have
started to develop class libraries based on existing message passing software.
Examples for PVM are Para++ [3], PVM++ [4], and EasyPvm [5]. Examples
for MPI are Para++, OOMPI [6], and the MPI-2 C++ bindings for MPI [7].

This paper describes CPPvM (C Plus Plus Pvm, [8]). CPPVM is a C++
message passing class library built on top of PVM. CPPvM enlarges PVM
with C++ features such as classes, inheritance, overloaded operators, exception
handling and streams. The main functionality of CPPVM is to pass the contents
of C++ objects between several processes running in parallel. The processes can
run on a network of computers with heterogenous architectures and different
operating systems (e.g. Windows and the most UNIX derivatives). The parallel
virtual machine connects these hosts to build just one machine. This allows a
transparent message passing between all CPPVM processes running on these
hosts.

2 Concepts

The fundamental concept of CPPvM is identical to that of PVM: a heteroge-
neous collection of hosts hooked together by a network can be used as a single
large parallel virtual machine. Processes running on these hosts can become part
of the virtual machine system. The processes can also spawn other processes on
every host in the system and exchange data among each other.

This scenario directly leeds to a set of classes: Processes must first be linked
to the parallel virtual machine. This is done by CPPvMm classes for process
handling which allow processes to connect to PVM and spawn child processes.
”Send and receive” stream classes are furthermore needed for explicit message
passing between processes. The stream classes are the transport channels for
message objects. It is also possible to use message objects as distributed or
mailbox objects. Figure 1 shows the hierarchy of available message classes.

B8l I8
EXRIE
SR
MG RE

[cppvmSingleData Fﬂgpvmwng i
leppvmObject " ‘
|
|
ST [oppvmArrayint__ |
{cppvmArrayData
bitset* cppvmArrayLong
conpiek
dee
list
map
multimap
multiset
priority_queue
queue
set
st —
stack ——1| cppvmSti Stack
i S
valarray*
i
[Joas [labsatces [[___]|MessgeClas Extenal Class + Compiler-Switch needed

Fig. 1. Message class hierarchy. The message classes can be used for explicit
message passing as well as for distributed and mailbox objects.

2.1 Explicit Message Passing

Explicit message passing is used to transfer data between objects of different
processes. Processes within CPPvM usually have a parent—child relationship.
For example in figure 2 process P1 has spawned process P2 on host A and process
P3 on host B.

Parallel Virtual Machine
Process P3
10
host A, architecture X host B, architecture Y
Message M f
; essage | _ Child
= gar:‘nmg O Object = Process

Fig. 2. Explicit Message Passing.

These relationships are used to define CPPVM message passing streams. In
the example process P1 has opened a send stream to its child process P2. The
message passing streams are used to send or receive C++ objects. In contrast
to PVM objects can be sent with or without waiting until the other process has
received the object (blocking or nonblocking). The modes of the receiving stream
are blocking, nonblocking and ”timeout receive”. The latter tries to receive an
object within a specified time range, otherwise the process continues without
having received the object.

2.2 Distributed Objects

Another possibility to exchange data between processes are ”distributed objects”
(see figure 3). A distributed object is a C++ object which has instances in several
processes.

A global data base contains one instance for every distributed object in the
system. Processes can have a local instance of this object. A ”"read method” of
the object is used to update the local object, a ”write method” updates the
corresponding object in the data base. When using distributed objects there is
no need for send/receive streams, since the instances of a distributed object are
matched by a unique identifier.

Parallel Virtual Machine ﬁ
[DataBase]
A

[[
host A, architecture X host B, architecture Y
= = Read/Write Distributed Child
Methods O Object 7 = Process

Fig. 3. Distributed Objects.

2.3 Message Mailbox Objects

Message mailbox objects are a superset of distributed objects. Mailbox objects
allow to generate more than one instance of one object in the global data base
(see figure 4). Whilst for distributed objects the connection between the local
object and the instance in the data base is one-to-one, for message mailbox
objects, the local object can randomly access all instances of an object in the
data base (1:n connection).

2.4 User Defined Classes

Standard CPPvM message classes (see figure 1) should be sufficient for most
kinds of parallel applications. However an interesting feature of CPPvM is the
possibility to write user-defined message classes. These classes can be used for
explicit message passing as well as for distributed and message mailbox objects.
It is also possible to enhance existing classes with this ability, e.g. transform an
existing program into a parallel program.

To create a CPPVM message class it must be derived from the class cppv-
mObject. Thereafter few modifications have to be made on this class:

— Modify/create the constructor and virtual destructor.

— Implement the virtual method cppvmTransfer: This method defines all mes-
sage passing class variables.

— Add the macro CPPvmMethodsDeclaration(msgtag) to the class declara-
tion.

The constructor of the class must call the constructor of the class cppvmOb-
ject (directly or indirectly). The virtual destructor is needed e.g. for deleting a
collection of objects.

Parallel Virtual Machine

[[
host A, architecture X host B, architecture Y
= = Read/Write/Delete Mailbox Child
Methods Object ~~~~ = Process

Fig. 4. Message Mailbox Objects.

The method cppvmTransfer specifies all data used for message passing. Only
the data defined in this method is transfered. This method is called for explicit
message passing as well as for distributed objects and message mailbox objects.
The message passing data defined in the method cppvmTransfer can be:

— Standard C/C++ types (single values and arrays).
— Other CPPvM message objects derived from cppvmObject.
— The data of the base class.

2.5 Advanced Topics

CPPVM contains many more concepts for parallel programming than those de-
scribed above. These concepts cannot be explained in detail in this paper, the
following list might however help to give an impression of the possibilities opened
by CPPvM:

Semaphores CPPVM includes an implementation of the semaphore concept
proposed by Dijkstra [9]. Semaphores are used to synchronize parallel pro-
cesses. They can also be used for critical sections. A critical section is a set of
instructions which shares resources with other parallel processes. The result
of a critical section can change unpredictable when these processes are run-
ning at the same time. A critical sections can be controlled by semaphores
allowing only one process to enter the section at one time.

Multi-Spawn In CPPVM more than one child process can be spawned at one
time. Messages can be broadcasted to all subprocesses. This feature sup-
ports architectures of parallel programs dividing a complex problem into
less complex, identical subproblems.

Catchout The output of a child process can be redirected to cout/cerr of the
master process or into a file.

Forward When using explicit message passing incoming messages can be di-
rectly forwarded to other processes.

Groups Processes can be combined to form groups. Messages can be broad-
casted to all members of a group. A process can be a member of several
groups simultaneously.

Context Processes can be spawned into a special context. Messages sent within
one context cannot be received in another context. Therefore a context can
help to avoid misleading messages. This is useful e.g. for the design of large
parallel programs using old code or parallel libraries stemming from other
developers.

Exceptions CPPvM uses C++ exceptions to indicate internal errors. Every
error which occurs in CPPvM throws an exception object which can be
caught by the user and handled individually.

Notifications Notification classes give informations about modifications of the
virtual machine: adding new hosts, a host is deleted or crashed, a process
exits or is killed.

Templates CPPvM also supports message passing for C++ template classes.

3 Example for Explicit Message Passing

Imagine a greeting ceremony among sportsmen called ”give-me-five”. The pro-
gram consists of the two processes coach and player (see figure 5).

Parallel Virtual Machine

| — [E—
beckenbauer, LINUX klinsmann, Windows
- Message Message Child
Passing O Object 777 = Process

Fig. 5. Give me five!

The process coach is started on the host beckenbauer and spawns the process
player on the host klinsmann. player sends a message to coach. coach prints
the message and PVM is halted. The source code is then the following:

coach.cpp

#include "cppvm.h"

int
main()
{

int value;

// spawn child ’player’ on host

// ’klinsmann’

cppvmSpawnConnection child(”player
PyvmTaskHost, ”klinsmann”) ;

IR T
3 3

// receive descriptor
// (blocking receive
// from child process)

cppvmReceiveStream recStrm(child,
CPPuvmRBchild) ;

player.cpp
#include "cppvm.h"

int
main()
{

int value=5;

// connect to pum

cppvmConnection pvmConn;

// send descriptor
// (nonblocking send
// to parent process)

cppvmSendStream sendStrm(
pvmConn, CPPvmSNBparent);

// send value

sendStrm << value;

cout << "coach: give me five!” << endl;
return 0;

// receive value from player 1
recStrm >> value;

cout << "player: 7 << wvalue << endl;

// halt the virtual machine
child. halt() ;

return 0;

For explicit message passing following types can be used:

— all CPPvM message classes (see figure 1)

— the standard C++ types bool, char, double, float, int and long as well
as constants’

— the standard template library (STL) classes bitset, complex, deque, list, map,
multimap, multiset, priority_queue, queue, set, slist, stack, string, valarray, and
vector

4 Conclusion

Object-orientation is state-of-practice in the field of programming. CPPvM was
designed to support object-oriented programming in C++ for cluster computing.

CPPvM is based on the Parallel Virtual Machine (PVM) and is published
under the GNU Library General Public License (LGPL) [8]. As shown, CPPVM
enlarges PVM with C++ features as classes, inheritance, overloaded operators,
exception handling and streams. CPPVM also hides some details of PVM (e.g.
starting PVM daemons or adding hosts) from the user and thus makes it easier
to write parallel programs. CPPvM is available for many architectures, from
Windows to several UNIX derivatives. CPPVvM allows to:

! Constants can of course only be sent and not received because they cannot change
their values.

— combine a heterogenous collection of computers

— spawn and kill processes dynamically

— detect failed processes and hosts

— send/receive C++ objects

— use distributed C++ objects

— use C++ objects together with a message mailbox
— write user-defined message C++ classes

— use C++ templates

— use standard template library (STL) classes

— use semaphores

— use CPPVM together with existing PVM software

CPPvM has a very detailed documentation in several formats (Postscript,
PDF and HTML). Many examples — from the very simple ”hello world” program
to more complex application/server programs — help the user to make his way
from his very first parallel steps to the innermost secrets of MIMD programming.

References

1. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. S. Sunderam:
PVM: Parallel Virtual Machine A Users’ Guide and Tutorial for Network Parallel
Computing, MIT Press, 1994, http://www.epm.ornl.gov/pvm/pvm_home.html/

2. MPI: Message Passing Interface, http://www.erc.msstate.edu/labs/hpcl/projects/
mpi/

3. O. Coulaud and E. Dillon: "PARA++ : C++ Bindings for Message
Passing Libraries”, in The FEuroPvm ’95 Users Meeting, Lyon, France,
http://www .loria.fr/projets/para++/

4. PVM++, http://goethe.ira.uka.de/ wilhelmi/pvm++/

5. FasyPvm, http://www.brunel.ac.uk/ mepghfb/pvm_c++_wrapper.htm

6. J. M. Squyres, B. C. McCandless, and A. Lumsdaine: ”"Object Oriented MPI: A
Class Library for the Message Passing Interface”, in The 1996 Parallel Object-
Oriented Methods and Application Conference (POOMA ’96), Santa Fe, New Mexico

7. MPI-2: Eztensions to the Message-Passing Interface, July 1997. Message Passing
Interface Forum, http://www.mpi.nd.edu/research/mpi2c++

8. S. Gorzig: CPPym: C++ Interface to PVM (Parallel Virtual Machine), 1999.
http://www.informatik.uni-stuttgart.de/ipvr/bv/cppvm

9. E. W. Dijkstra: " The Structure of the THE Multiprogramming System”, in Com-
mun. of the ACM 11, pp. 341-346, May 1968

