ANTS — Intelligent Vision In Urban Traffic

Steffen Gorzig, Uwe Franke

Abstract— The growing complexity of intelligent vision
systems increasingly requires software architectures, which
can deal with several perception modules running in parallel
and different applications using these modules.

In this paper a multi-agent system (MAS) is presented
that has primarily designed as a software architecture for
controlling multiple software modules. The described ‘“Agent
NeTwork System” (ANTS) offers components for several
purposes: the integration and co-operation of various modu-
les, distributed computing, the development of applications
and test environments for system components.

The ANTS architecture consists mainly of two com-
ponents: modules and administrators. Modules are the com-
putational entities of the system. They can perform certain
tasks, e.g. lane tracking. The modules are controlled by ad-
ministrators. An administrator continuously determines the
modules, which are currently necessary to achieve a specific
application.

The first application we are working on is an autonomous
Stop&Go driving with our UTA (urban traffic assistant) de-
monstrator. For this, ANTS administrates the computer vi-
sion tasks, vehicle control and driver interface modules.

Keywords— intelligent vision, software architecture, auto-
nomous vehicle guidance, multi-agent system

I. INTRODUCTION

N the past great efforts have been made for driving au-

tonomously on highways. For example, in 1986 Dick-
manns [1] demonstrated autonomous driving on highways
at speeds up to 100 km/h. Also at the final presentati-
on of the European PROMETHEUS project our VITA II
demonstrator showed fully autonomous driving including
planning and performed overtaking manoeuvres [2]. The
very promising results encouraged us to go a step ahead
and enter the much more complex urban environment, for
computer vision applications. The first application we are
working on is an autonomous Stop&Go driving with our
UTA (urban traffic assistant) demonstrator[3]. Driver as-
sistance systems in this scenario are challenging not only
from the algorithmic but also from the system architecture
point of view.

The architectures of most autonomous driving systems
are usually tailored to a specific application, e.g. lane kee-
ping on highways. The functionality is achieved by a few
computer vision and vehicle control modules, which are
connected to each other in a hard-wired fashion. Although
this kind of architecture is suitable for a lot of applications,
it also has some disadvantages:

o The architecture is not scaleable for a larger number of
modules.

¢ There is no uniform concept for the co-operation of mo-
dules (e.g. for sensor fusion).

o New applications usually require extensive reimplemen-
tations.

S. Gorzig and Uwe Franke are with the Daimler-Benz Resarch,
Image Understanding (FT3/AB) , HPC T728, D-70546 Stuttgart,
Germany. E-mail: {goerzig,franke}@dbag.stg.daimlerbenz.com

o Reuse of old modules can be difficult due to missing in-
terfaces.

The growing complexity of autonomous systems hence
reinforces the development of architectures, which can deal
with the following requirements:

o integration and co-operation of various computer vision
algorithms

« different abstraction level of action/perception/control
« sensor fusion

» economical use of resources

o test environments for system components

o integration of new algorithms without a complete rede-
sign of the system

¢ simple enhancement to new computer vision applications
o distributed computing.

To meet these requirements, several architectures were
proposed, for example in [4] and [5]. The approach descri-
bed in this paper is a multi-agent system for intelligent vi-
sion control, which allows UTA (urban traffic assistant) to
perform Stop&Go driving. The “Agent NeTwork System”
(ANTS) administrates computer vision, vehicle control and
driver interface processes on three PowerPC 604e and a
Pentium IT PC to achieve this application. ANTS integrates
several vision algorithms for various image understanding
tasks, e.g. stereo based object detection, lane detection, pe-
destrian recognition, traffic sign, and traffic light recogni-
tion. It selects and controls these algorithms and focuses
the resources on relevant tasks for specific situations. For
example, there is no need to look for new traffic signs or
continuously determine the lane position, while the car is
slowing down in front of a red traffic light.

II. MULTI-AGENT SYSTEMS

GENT software is a rapidly developing area of re-

search. Since heterogeneous research is summarised
under this term there is no consensus definition for the
word “agent”. A working definition of a multi-agent system
(MAS) can be defined as “a loosely-coupled network of pro-
blem solvers that work together to solve problems that are
beyond their individual capabilities”[6]. The smallest en-
tity of a MAS is an agent. An agent could be described
as a computational entity, which provides services and has
certain degrees of autonomy, co-operation and communica-
tion.

With this definitions it is not difficult to see how a MAS
can be applied for autonomous vehicle guidance. Each com-
puter vision or vehicle control module contains some func-
tionality which can be useful for autonomous driving. The
capabilities of these modules have to be combined to allow
more complex applications like autonomous Stop&Go dri-
ving in urban environments. The idea is to add the missing
autonomy, co-operation and communication to the modules
to create a MAS.

III. ANTS — COMPONENTS

HE system is completely written in C++. The main
components of ANTS are (see also figure: 1):

o Data base

o Administrators

e Communication interfaces

e Modules

o Servers

Modules

Communication Interface

Administrator n

Administrator T

Scheduler

Communication Interface

Modules

Fig. 1. ANTS — Components.

The modules are the computational entities of the sy-
stem, whereas the administrators contain the autonomy
and the co-operation of the software agents. Combined with
the communication interface they build the MAS as descri-
bed above. This distinction between a computation com-
ponent and the “intelligent” component of an agent has
several advantages:
¢ The components can be executed parallel
« Existing modules can be used
o The modification of a component does not necessarily
require a modification of the other components

Although ANTS is a MAS for various applications, we
will now focus on the Stop&Go driving with UTA (see fi-
gure 1) and explain the main components more detailed.

A. Data Base

The central component of ANTS is the data base. It con-
tains all incoming and outgoing data of the modules. This
data is typically on a symbolic level and can be used e.g.
for driver information or for the co-operation of modules.
For instance the results of a lane recognition module and
an obstacle detection module are useful for the lateral and
longitudinal vehicle control module.

The data base has several access methods for its data like
exclusive write and concurrent read. For example, the ste-
reo obstacle module can access its symbolically represented

results in the exclusive write mode to track old and detect
new obstacles, whereas the visualization module can access
the results of all computer vision modules concurrently to
submit important information to the driver.

The different computer vision modules provide 2D as well
as 3D information about the environment. This information
can be visualized in a driver interface module (see figure
2). With the vehicle sensor data the position and relative
motion states of the 3D objects can be estimated by means
of Kalman filtering.

This prediction is useful to set the region of interest for
computer vision modules. It generates also a good basis to
make decisions about following steps and allows to update
data when other image processing tasks are more import-
ant at the moment. The prediction is done by a data base
prediction module, which can be treated like any other mo-
dule.

i
;
8
§
i

Fig. 2. Visualization of the computer vision results.

B. Administrator

An administrator controls a set of modules (see figure
3). The administrator has to choose the modules, which
have to be executed in the next step, and give them to the
scheduler.

Administrator n

Control

Fig. 3. Administrator.

The actual module selection is done by a decision com-

ponent within the administrator control. This control com-
ponent is the core “intelligence” of the modules. The result
of the decision depends on the current situation, i.e. the
current data base entries. The traffic light recognition and
the arrow recognition modules, for instance, can be swit-
ched off, when the vehicle is driving on a highway. Active
modules can be ignored, as well as other modules, which
have to wait for results of other modules or which are less
important than others at the moment. It is also possible to
have more than one module for a certain task: for exam-
ple, a fast but unprecise obstacle tracking and a slower but
more precise one. When the position of a tracked object is
well known, the fast variant is used; otherwise, the slower
one is more likely to be called.

Within the module control component, various methods
for choosing modules can be implemented. The methods
can be compared to each other by replacing the control
component (see figure 4). While the currently implemen-
ted method uses a simple priority mechanism, there is on-
going work on more advanced AI methods like distributed
planning, rule based reasoning, or neuronal networks.

The chosen modules are submitted to the scheduler. The
scheduler communicates with the modules and executes the
module tasks on the specified computational nodes. Due to
the real-time constraint, all processes have already started
waiting for messages from the administrator.

o Administrator n

Control

Control

Scheduler

Fig. 4. Different controls can be used in a administrator.

ANTS can handle several administrators. Modules,
which do not belong together, are assigned to different ad-
ministrators. This is useful to avoid complex decision com-
ponents. In UTA, for example, one administrator controls
the computer vision modules, another one the vehicle con-
trol, and a third one the driver interface modules.

An administrator can also handle exceptions in modu-
les. A critical error within a module is submitted to the
administrator. The administrator can now decide to stop
the entire system, or just disable the affected module, in
the case that it is not needed for safe vehicle guidance or
multiple modules are available for the same task.

C. Commaunication

The communication within ANTS is done with a C++
class library for message passing. The library is able to send
and receive C++ objects and is based on the parallel virtu-

al machine system PVM [7]. PVM is a portable, easy-to-use
message passing tool written in C. Since the submitted data
in ANTS is usually on symbolic level, PVM is fast enough
for real-time applications. With PVM a set of heteroge-
neous computers can be combined into just one large vir-
tual machine, which allows us to use three AIX/PowerPCs
together with a Windows/Pentium II computer.

D. Modules and Servers

Each module in the system (like the vehicle control mo-
dule) represents a computational entity. They can be dis-
tributed on several computational nodes and are handled
uniformly by the system via the communication interface.
The modules consist of a functional part and the system
part (see figure 5).

Modul

Functiona Task
Part
Task Interface
Task Scheduler

} System Part

Administrator
Commuinication

Communication Interface

Fig. 5. Parts of a module.

The system part communicates with the administrator
and has a small scheduler to call the functional part if re-
quested by the administrator. This part also catches occur-
red exceptions in the functional parts and sends them to
the administrator. The task interface defines all incoming
and outgoing data for a module task and all communica-
tion between the parts is done via this interface. This is
useful in many ways:

« existing software can be reused

« the developer of a module (e.g. a lane tracking) doesn’t
have to care about the ANTS components like message
passing

o the developer of an administrator doesn’t have to know
the innermost details of the modules

o this separation allows test environments as described be-
low

Modules can also obtain data from other modules via the
data base and its task interface. This allows to implement
sensor fusion modules, for example, to fuse the results of a
stereo image obstacle detector and a radar obstacle detec-
tor.

Servers can also be accessed via the task interface. Ser-
vers are components, that can be used by more than one
module task. There is, for example, a time server which
provides a unique time on each computational node. For
the computer vision modules, a stereo camera system and
a colour camera can be accessed. There is also a vehicle
interface to read the sensor data and to set the actuators.

IV. TEST ENVIRONMENTS

OMPLEX parallel applications inherently have many

sources of errors. The range of errors covers unexpec-
ted system behaviour up to critical defects and can be cau-
sed by each component or the co-operation of components.
Thus special attention should be paid to the test environ-
ment of the system.

The separation of the modules into the functional part
and the system part with the task interface allows a re-
placement of one part without a modification of the other
one. This can be used to test modules as well as to test the
behaviour of the administrators.

A. Testing Modules

A standalone version of a module can be created by re-
placing the system part of a module with a test task (see
figure 6). This is useful not only for module debugging, but
also for the integration of new modules into ANTS.

The first step to add, for example, a traffic sign recogni-
tion software, is the definition of the task interface. After
that, a standalone module version is created. The developer
can now test and debug the traffic sign software as usually,
without taking the rest of the ANTS components into ac-
count. As practical experiences show, little efforts have to
be made to create a module without having multiple source
codes of a module task. The traffic sign recognition, for ex-
ample, can still be compiled without the task interface and
the task scheduler. This facilitates the maintenance of the
software. Once a standalone module has reached a stable
version, it can be added to the MAS by replacing the test
task scheduler by the system part.

MAS Modul Standalone Modul
Functional
Part
Test
System Part{ ~— }Task
Scheduler

Administrator
Communication

Fig. 6. Test environment for modules.

There are also several possibilities to test a module when
it is already connected to the system. Each module of
ANTS can be started within a debugger. This allows a de-
tection of errors caused by the co-operation of components.
As described above, critical exceptions of a module are
caught and submitted to the administrator. The admini-
strator is than able to decide how to handle the error. For
developers of modules, it is often necessary, to inspect in-
ternal information during runtime. It is not practical to
allow all modules to print this information at the same ti-
me. Thus each module has a debug level, which can be
interactively incremented, for example, to get additional
information about a computer vision algorithm.

B. Testing Administrators

The task interface of a module also allows a replacement
of the module task without the modification of the entire
system (see figure 7). This is used to test the system core,
i.e. the behaviour of the administrators.

Administrator n

Control

Control

Administrator 1

=
=

Fig. 7. ANTS Simulator environment.

As described in III-B, various methods for the module
control can be implemented in an administrator. To obtain
a fair comparison between these methods, it is necessary to
create equal environment conditions. This is very difficult
for complex computer vision applications. The solution is
to replace the computer vision and vehicle control modules
by a urban traffic simulator (see figure 7).

The urban traffic simulator generates typical traffic sce-
nes, including cars, pedestrians, bikes, traffic lights and si-
gns etc. (see figure 8). A car with the steering behaviour
of an S-Class Mercedes interacts with the environment by
virtual symbolic sensors and actuators. These sensors allow
to perform virtual perception tasks. The virtual tasks re-
place the real computer vision module tasks by simulating
their abilities without image processing.

The simulator allows to test the behaviour of the system
in various scenes with comparable results for different con-
trol methods. Moreover the simulator can help to evaluate
questions like this: How does the system react with a smal-
ler camera lens angle? Can the system benefit from a new,
in real life non-existent, perception module? What appli-
cations are possible by adding a new sensor, e.g. a radar?

V. RESuULTS

AUTONOMOUS Stop&Go driving with our UTA de-
monstrator is the first application we are working on
in inner city environments. In the Stop&Go application,

[=] simulator |15
Simulation Optionen Hilfe

Autonomous vehicle

Scan Layout| start Ti merl
. e |

Scale factor: Winsize ¥: W
| Mouseposition X: Ve In Puzzle:

Protokoll| = | <->|]

Fig. 8. Urban traffic simulator.

the driver can accept a vehicle ahead, which has been reco-
gnized as the ’leading vehicle’ by the vision system. UTA
follows this vehicle autonomously. There are several condi-
tions which will end the autonomous driving. For example,
if the leading vehicle leaves its lane, a red traffic light is
detected, or if the driver switches the application off.
The modules to be controlled by ANTS are:
« stereo-based object detection and tracking (see [8])
« lane detection and tracking (see [9])
o traffic sign and traffic light recognition (see [10])
o recognition of road markings (direction arrows, see [3])
« crosswalk recognition (see [9])
«» vehicle classification
« overtaking vehicles detection
o pedestrian recognition (see [11])
« vehicle control (lateral/longitudinal)
o driver interface (visualization)
o prediction of data base entries
So far, not all of the modules have been completed and
integrated into the system. Currently, UTA is able to reco-
gnize traffic lights and direction arrows and to follow auto-
nomously a leading vehicle. The next steps are to include
the missing modules, and to adapt the system to multiple
environments, i.e. to use the system for inner city traffic as
well as for autonomous driving on highways. The system
should be able to dynamically switch the autonomous dri-
ving applications and the modules to achieve these tasks.
Besides autonomous Stop&Go driving, the ANTS archi-
tecture allows to add other standard applications in the
future:
 speed limit assistant: the driver is warned when driving
faster than allowed on the current road.
¢ lane departure warning: leaving the lane on highway cau-
ses a warning message.

o enhanced cruise control: the vehicle slows down, when a
car in front falls below the desired speed. It raises the speed
again, if there is no obstacle ahead.

VI. CONCLUSION

NTELLIGENT vision systems will be applied to incre-

asingly complex tasks in the future. The growing com-
plexity of these system will require software architectures,
which can cope with several perception modules and app-
lications.

The described MAS architecture offers components for
this kind of distributed programs. The “Agent NeTwork
System” allows a continuous enhancement of the system by
adding modules and implementing new applications. With
the task interface of a module, it is also possible to reuse old
software. The architecture also simplifies sensor fusion and
enables the perception modules to contribute to various
intelligent vision applications.

Due to the complexity of large distributed applications,
special efforts have to be made for test environments. The
ANTS modules can be tested and debugged as a standalone
version as well as in combination with the entire system. To
test the behaviour of the system, the module tasks can be
replaced by virtual tasks. This allows to compare different
module control strategies of the administrators.

The ability of the “Agent NeTwork System” to control co-
operating modules can be applied for autonomous driving
in complex scenarios. The first application is autonomous
Stop&Go driving in an urban environment.

REFERENCES

[1] E. D. Dickmanns and A. Zapp, “A curvature-based scheme for
improving road vehicle guidance by computer vision,” in SPIE
Conference on Mobile Robots, 1986, vol. 727, pp. 161-167.

[2] B. Ulmer, “VITA II - Active collision avoidance in real traffic,”
in Intelligent Vehicles ‘94, Paris, Oct. 1994, pp. 1-6.

[3] U. Franke, S. Gorzig, F. Lindner, D. Mehren, and F. Paetzold,
“STEPS TOWARDS AN INTELLIGENT VISION SYSTEM
FOR DRIVER ASSISTANCE IN URBAN TRAFFIC,” in IEEE
Conference on Intelligent Transportation Systems, Nov. 1997,
pp- 601-606.

[4] Dirk Reichardt, Kontinuierliche Verhaltenssteuerung eines au-
tonomen Fahrzeugs in dynamischer Umgebung, Ph.D. the-
sis, Universitdt Kaiserslautern, Jan. 1996, Forschung F1M/IA
Daimler—Benz.

[5] M. Maurer and E. D. Dickmanns, “A SYSTEM ARCHITEC-
TURE FOR AUTONOMOUS VISUAL ROAD VEHICLE GUI-
DANCE,” in IEEE Conference on Intelligent Transportation
Systems, Nov. 1997, pp. 578-583.

[6] G. O’Hare and N. Jennings, Eds., Foundations of Distributed
Artificial Intelligence, John Wiley & Sons, 1996.

[7] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Ro-
bert Manchek, and Vaidyalingam S. Sunderam, PVM: Parallel
Virtual Machine A Users’ Guide and Tutorial for Network Par-
allel Computing, MIT Press, 1994.

[8] U. Franke and I. Kutzbach, “Fast Stereo based Object Detec-
tion for Stop&Go Traffic,” in IEEE Conference on Intelligent
Transportation Systems, Tokyo, Oct. 1996, pp. 339-344.

[9] F. Paetzold and U. Franke, “Road Recognition in Urban En-
vironment,” in IEEE Conference on Intelligent Transportation
Systems, to be published Oct. 1998.

[10] W. Ritter, F. Stein, and R. Janssen, “Traffic Sign Recognition

Using Colour Information,” in Math. Comput. Modelling, No.

4-7, 1995, vol. 22, pp. 149-161.

C. Wohler, J. K. Anlauf, T. Portner, and U. Franke, “A Time

Delay Neural Network Algorithm for Real-Time Pedestrian Re-

cognition,” in IEEE Conference on Intelligent Transportation

Systems, to be published Oct. 1998.

[11]

